Skip to main content
Log in

A Study of Structural, Magnetic and Various Dielectric Parameters of Ca-Substituted W-Type Hexaferrites for Applications at 1–6 GHz Frequencies

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Single phase Ca-substituted W-type hexaferrites Sr1-xCaxZn2Fe16O27(x = 0.00(0.25)1.00) have successfully been synthesized by using sol–gel self-combustion at 1300°C. These hexaferrites are investigated by x-ray difrractometry (XRD), scanning electron microscopy, energy dispersive x-ray spectroscopy, Fourier transform infrared spectroscopy, vibrating sample magnetometry, and vector network analysis. XRD analysis confirms the formation of a single W-type hexaferrites phase. The DC electrical resistivity increases with incrementing Ca contents. The morphology of all the hexaferrites shows hexagonal platelet-like structure. The prepared ferrites depict soft magnetic nature with high saturation magnetization, low coercivity and enhanced magnetic moments. The complex parameters such as complex permittivity and permeability decrease with the increasing Ca content. The prepared samples show good quality factor of 3 at 6 GHz, AC conductivity changes from 0.9 S/m to 0.5 S/m, and tangent loss decreases from 0.5 to 0.34 with Ca substitution. These improved characteristics make these hexaferrites valuable for devices such as microwave absorbers operated at higher frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Guo, W. Zi, G. Ji, L. Zou, and S. Gan, J. Polym. Res. 22, 48 (2015).

    Article  Google Scholar 

  2. J. Hassan, F.M. Yen, M. Hashim, Z. Abbas, Z.A. Wahab, W.M.D.W. Yusoff, and A. Zakaria, Ionics 13, 219–222 (2007).

    Article  CAS  Google Scholar 

  3. S.R.K. Balaji, D. Mutharasu, S. Shanmugan, N.S. Subramanian, and K. Ramanathan, Ionics 16, 351 (2010).

    Article  CAS  Google Scholar 

  4. R. McCurrie and S. Jackson, J. Appl. Phys. 61, 4858 (1987).

    Article  CAS  Google Scholar 

  5. C. Wang, X. Qi, L. Li, J. Zhou, X. Wang, and Z. Yue, Mater. Sci. Eng., B 99, 270 (2003).

    Article  Google Scholar 

  6. M. Hessien, D. Rayan, M. Mahmoud, A. Alhadhrami, and M. Rashad, J. Mater. Sci.: Mater. Electron. 29, 9771 (2018).

    CAS  Google Scholar 

  7. G.R. Gordani, M. Mohseni, A. Ghasemi, and S.R. Hosseini, Mater. Res. Bull. 76, 187 (2016).

    Article  CAS  Google Scholar 

  8. M.J. Iqbal, R.A. Khan, S. Mizukami, and T. Miyazaki, Ceram. Int. 38, 4097 (2012).

    Article  CAS  Google Scholar 

  9. J. Wang, C. Ponton, R. Grössinger, and I. Harris, J. Alloy. Compd. 369, 170 (2004).

    Article  CAS  Google Scholar 

  10. L. Wang, J. Song, Q. Zhang, X. Huang, and N. Xu, J. Alloy. Compd. 481, 863 (2009).

    Article  CAS  Google Scholar 

  11. N. Dishovski, A. Petkov, I. Nedkov, and I. Razkazov, IEEE Trans. Magn. 30, 969 (1994).

    Article  CAS  Google Scholar 

  12. B. Shirk and W. Buessem, J. Appl. Phys. 40, 1294 (1969).

    Article  CAS  Google Scholar 

  13. A. Huanosta-Tera, R.D. Lira-Hueso, O. Pérez-Orta, S. Palomares-Sanchez, S. Ponce-Castaneda, and M. Mirabal-Garcia, Scripta Mater. 42, 139 (2000).

    Article  Google Scholar 

  14. I. Khan, I. Sadiq, I. Ali, M. Najam-Ul-Haq, A. Shah, I. Shakir, and M.N. Ashiq, J. Magn. Magn. Mater. 397, 6 (2016).

    Article  CAS  Google Scholar 

  15. G.M. Rai and M. Rana, J. Alloy. Compd. 509, 4793 (2011).

    Article  Google Scholar 

  16. A. Farhadizadeh, S.S. Ebrahimi, and S. Masoudpanah, J SUPERCOND NOV MAGN 29, 1273 (2016).

    Article  CAS  Google Scholar 

  17. M.N. Akhtar and M.A. Khan, Ceram. Int. 44, 12921 (2018).

    Article  CAS  Google Scholar 

  18. M.J. Iqbal, M.N. Ashiq, and I.H. Gul, J. Magn. Magn. Mater. 322, 1720 (2010).

    Article  CAS  Google Scholar 

  19. W. Lee, Y.-K. Hong, M. Choi, H. Won, J. Lee, G. LaRochelle, and S. Bae, IEEE Magn. Lett. 8, 1–4 (2017).

    Google Scholar 

  20. M. Rashad, E. Elsayed, M. Al-Kotb, and A. Shalan, J. Alloy. Compd. 581, 71 (2013).

    Article  CAS  Google Scholar 

  21. F.G. Brockman, P. Dowling, and W.G. Steneck, Phys. Rev. 77, 85 (1950).

    Article  Google Scholar 

  22. M.J. Iqbal and R.A. Khan, J. Alloy. Compd. 478, 847 (2009).

    Article  CAS  Google Scholar 

  23. M. Ahmad, R. Grössinger, I. Ali, I. Ahmad, and M. Rana, J. Alloy. Compd. 577, 382 (2013).

    Article  CAS  Google Scholar 

  24. M. Barakat, M. Henaish, S. Olofa, and A. Tawfik, J. Therm. Anal. Calorim. 37, 241 (1991).

    Article  CAS  Google Scholar 

  25. N. Mott, J. Phys. C: Solid State 13, 5433 (1980).

    Article  CAS  Google Scholar 

  26. M.N. Akhtar, T. Hussain, M.A. Khan, and M. Ahmad, RESULTS PHYS 10, 784 (2018).

    Article  Google Scholar 

  27. L. Zhang, G. Min, H. Yu, and H. Yu, Ceram. Int. 36, 2253 (2010).

    Article  CAS  Google Scholar 

  28. N.N. Greenwood and A. Earnshaw, Chemistry of the elements (Elsevier, 2012).

  29. L. Deng, L. Ding, K. Zhou, S. Huang, Z. Hu, and B. Yang, J. Magn. Magn. Mater. 323, 1895 (2011).

    Article  CAS  Google Scholar 

  30. P. Sawadh and D. Kulkarni, Bull. Mater. Sci. 24, 47 (2001).

    Article  CAS  Google Scholar 

  31. S. Ounnunkad and P. Winotai, J. Magn. Magn. Mater. 301, 292 (2006).

    Article  CAS  Google Scholar 

  32. K. Wagner, Ann. Phys. 40, 817 (1913).

    Article  Google Scholar 

  33. J. Bera and P. Roy, Phys. B 363, 128 (2005).

    Article  CAS  Google Scholar 

  34. V. Zaspalis, V. Tsakaloudi, and E. Papazoglou, J. Electroceramics 11, 107 (2003).

    Article  CAS  Google Scholar 

  35. S.W. Lee, S.Y. An, I.-B. Shim, and C.S. Kim, J. Magn. Magn. Mater. 290, 231 (2005).

    Article  Google Scholar 

  36. A. El Foulani, A. Aamouche, A. Jedaa, M. Amjoud, and K. Ouzaouit, J. Mater. Environ. Sci. 7, 863 (2017).

    Google Scholar 

  37. A. Shaikh, S. Jadhav, S. Watawe, and B. Chougule, Mater. Lett. 44, 192 (2000).

    Article  CAS  Google Scholar 

  38. M. Jean, V. Nachbaur, J. Bran, and J.-M. Le Breton, J. Alloy. Compd. 496, 306 (2010).

    Article  CAS  Google Scholar 

  39. M. Ahmad, I. Ali, F. Aen, M. Islam, M.N. Ashiq, S. Atiq, W. Ahmad, and M. Rana, Ceram. Int. 38, 1267 (2012).

    Article  CAS  Google Scholar 

  40. H.A. Graetsch, Acta Crystallogr. C 58, 152 (2002).

    Article  Google Scholar 

  41. A. Goldman, Modern ferrite technology, 2nd ed. Chap. 3 (USA, 2006), p. 35.

  42. G. Albanese, M. Carbucicchio, and G. Asti, J. Appl. Phys. 11, 81 (1976).

    Article  CAS  Google Scholar 

  43. M.N. Akhtar, M.A. Khan, M. Ahmad, G. Murtaza, R. Raza, S. Shaukat, M. Asif, N. Nasir, G. Abbas, and M. Nazir, J. Magn. Magn. Mater. 368, 393 (2014).

    Article  Google Scholar 

  44. Q. Liu, C. Wu, Y. Wang, X. You, J. Li, Y. Liu, and H. Zhang, Ceram. Int. 121, 1231 (2019).

    Google Scholar 

  45. M.Z. Iqbal, Journal of advanced research 7, 135 (2016).

    Article  CAS  Google Scholar 

  46. I. Rabinkin and Z. Novikova, CIS.Minsk.by. 146, (1960).

  47. M. Ajmal and A. Maqsood, Mater. Sci. Eng., B 139, 164 (2007).

    Article  CAS  Google Scholar 

  48. R. Kharabe, R. Devan, C. Kanamadi, and B. Chougule, Smart Mater. Struct. 15, 36 (2006).

    Article  Google Scholar 

  49. C. Koops, Phys. Rev. 83, 121 (1951).

    Article  CAS  Google Scholar 

  50. N. Kumari, V. Kumar, and S. Singh, RSC Adv 5, 37925 (2015).

    Article  CAS  Google Scholar 

  51. R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, J. Švec, V. Enev, and M. Hajdúchová, Adv. Nat. Sci: Nanosci. Nanotechnol. 8, 45002 (2017).

    Google Scholar 

  52. M.M. Rahman, P.K. Halder, F. Ahmed, T. Hossain, and M. Rahaman, Int. J. Sci. Res. 4, 297 (2012).

    CAS  Google Scholar 

  53. M. Costa, G. Pires Jr., A. Terezo, M. Graca, and A. Sombra, J. Appl. Phys. 110, 34107 (2011).

    Article  Google Scholar 

  54. M. Kaiser, Mater. Res. Bull. 73, 452 (2016).

    Article  CAS  Google Scholar 

  55. S. Narayanan, A.K. Baral, and V. Thangadurai, Phys. Chem. Chem. Phys. 18, 15418 (2016).

    Article  CAS  Google Scholar 

  56. K. Rasool, M. Rafiq, M. Ahmad, Z. Imran, and M. Hasan, Appl. Phys. Lett. 101, 253104 (2012).

    Article  Google Scholar 

  57. D.C. Sinclair and A.R. West, J. Appl. Phys. 66, 3850 (1989).

    Article  CAS  Google Scholar 

  58. M. Etemadrezaei and S.M. Lukic, ECCE 14, 21 (2012).

    Google Scholar 

  59. L. Jia, J. Luo, H. Zhang, G. Xue, and Y. Jing, J. Alloy. Compd. 489, 162 (2010).

    Article  CAS  Google Scholar 

  60. G. Amiri, M. Yousefi, and S. Fatahian, Optoelectron. Adv. Mat. 6, 158 (2012).

    CAS  Google Scholar 

  61. Y. Feng, T. Qiu, and C. Shen, J. Magn. Magn. Mater. 318, 8 (2007).

    Article  CAS  Google Scholar 

  62. N. Sivakumar, A. Narayanasamy, B. Jeyadevan, R.J. Joseyphus, and C. Venkateswaran, J. Phys. D 41, 245001 (2008).

    Article  Google Scholar 

  63. F. Advances in Natural Sciences: Nanoscience and NanotechnologyAen, M. Ahmad and M. Rana, Curr. Appl. Phys. 13, 41 (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhtar Ahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ur Rehman, A., Shaukat, S.F., Akhtar, M.N. et al. A Study of Structural, Magnetic and Various Dielectric Parameters of Ca-Substituted W-Type Hexaferrites for Applications at 1–6 GHz Frequencies. J. Electron. Mater. 48, 7149–7161 (2019). https://doi.org/10.1007/s11664-019-07515-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07515-w

Keywords

Navigation